The Effect of a Metal-Oxide Coating on the Cycling Behavior at 55°C in Orthorhombic LiMnO₂ Cathode Materials

Jaephil Cho*1, Tae-Joon Kim², Yong Jeong Kim², and Byungwoo Park²

¹Samsung SDI Co., Ltd, Chonan, Chungchongnam-Do ²School of Materials Science and Engineering Seoul National University, Seoul Korea

structural stability of metal-oxide-coated orthorhombic LiMnO2 (o-LiMnO2) was characterized by its 55°C-cycling behavior. Sol-gel coating of the metal oxides (Al_2O_3 and CoO), followed by heat-treatment at 400°C, leads to the formation of the solid-solution layer $(LiMn_{1-x}M_xO_2)$ with concentration gradient of metal atoms at the particle surface. The specific capacity and cycle life at 55°C are influenced significantly by the metal-oxide coating. CoO-coated LiMnO2 exhibits an additional voltage plateau at the deep discharge (2 V), and has a higher capacity than Al₂O₃-coated electrode, although the capacity retention is inferior to the Al₂O₃-coated cathode (Fig. 1).

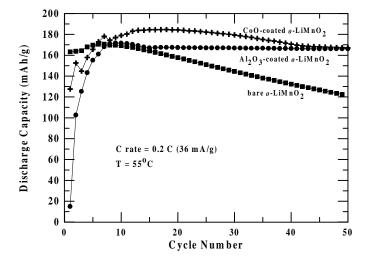


Fig. 1. Plots of the discharge capacity vs. cycle number in bare, CoO-coated, and Al_2O_3 -coated LiMnO₂ electrodes at the rate of 0.2 C (= 36 mA/g) between 4.5 and 2 V at 55°C.